

Reviewing recent observations of accretion bursts in high-mass YSOs

Alessio Caratti o Garatti & Jochen Eislöffel

B. Stecklum, R. Cesaroni, L. Moscadelli, R. Burns, C. Brogan, T. Hunter, H. Linz, V. Wolf,G. MacLeod, the M2O team and many others.....

A common phenomenon across mass and time

Accretion in YSOs not steady but episodic

Observed in:

- Low-mass protostars (Safron+2015) and premain sequence.
- Intermediate mass and Vellos (Teixeira+2018, Hsieh+2018).
- High-mass YSOs (4 so far since 2016).
- FUors/EXors types are just two extremes of a broader continuum of events not well understood.
- How relevant is episodic accretion in star formation?

Accretion bursts in HMYSOs

The discovery of episodic accretion in HMYSOs has opened a new research field in star formation.

- 4 accretion bursts detected and studied so far:
- S255IR NIRS 3: \sim 20 M_☉ (Caratti o Garatti+2017; Moscadelli +2017; Szymczak+2017; Liu+2018; Cesaroni+2018; Uchiama+2019)
- NGC 6334I MM1: ~20 M_o (Hunter+2017,2018; Brogan+2018; McLeod+2018)
- **G358.93-0.03** MM1: $\sim 10 M_{\odot}$ (Brogan+2019;

MacLeod+2019; Breen+2019; Burns+2020; Stecklum+submitted)

■ G323.46-0.08: ~8 M_☉ (Proven-Adzri+2019; Wolf+ in

prep)

Main characteristics of HMYSO bursts

- Despite the small sample large variety of physical properties as in low-mass bursts
- Rising time: from 3 months to 1 year

- Length: from 7 months to 6 years (1 still active after 6 yrs)
- Increase in L_{bol} (ΔL_{acc}): from 6 to 70 times (from few 10³ to few 10⁵ L_{\odot})
- Accretion rates in burst: up to several 10⁻³ M_☉/yr
- Released energy: from few 10⁴⁵ to several 10⁴⁶ erg
- All bursts signalled by methanol maser flares

Maser Monitoring Organization

NGC 6334I MM1 – a FUor-like burst?

- N6334I-MM1 most embedded source, burst detected in the mm, H₂O, CH₃OH, OH maser flares (Hunter+ 2017, MacLeod+2018)
- Flared mid-IR to submillimeter
- L_{bol} increased by 70x (to 10⁵ L_{\odot})
- Released energy (10⁴⁶ erg)
- Burst still active after 6 years (FUor-like counterpart?)

G323.46-0.08 – an archival burst

5.5

6.0

6.5

7.0

7.5

8.0

5000

5500

6000

6500

MJD-50000

7000

Burst discovered in 2018 from archival data

- Poorly known HMYSO (M~8M_o?) with an UCHII region
- CH3OH maser flare
- From VVV and WISE NIR lightcurves the burst lasted 4-5 years

7500

8000

8500

Introducing the HMYSO S255IR-NIRS3

- $L_{bol} = 2x10^4 L_{\odot}$; $M_* \sim 20 M_{\odot}$; $d=1.8\pm0.1 \text{ kpc}$ (Burns+ 2016)
- Disk, jet and outflow
- H₂O (Goddi+ 2007) & CH₃OH (Menten 1991) masers

- CH₃OH masers are pumped by IR radiation
- CH₃OH flare (Fujisawa+ 2015) triggered our observations....

First disk-mediated accretion burst in a HMYSO

 UKIDSS (Dec. 2009) vs.
 PANIC (Nov. 2015): ΔH=3.5 mag ΔK=2.5 mag

Caratti o Garatti et al. 2017, Nature Phys.

- Accretion burst
 — flash-light from outflow cavities.
- Light echo motion indicating outburst started before the maser flare (mid-June 2015 vs Sept. 2015)

On source NIR spectroscopy & photometry

On source spectroscopy almost featureless (H₂, Bry, CO) with a rising continuum.

Caratti o Garatti et al. 2017, Nat. Phys.

Disk almost edge-on: need to look at the outflow cavities to see the accretion region/inner disk region

K-band spectrum of the outflow cavity

Spectroscopic evolution of the burst in the NIR

 NIR continuum flux back to pre-outburst values (Dec. 2017) accretion burst is over.

 Line evolution: HI & HeI accretion/wind lines fading or disappeared; inner gaseous disk is cooling (CO bandheads); H₂ line intensities are increasing: jet activity

Caratti o Garatti et al. in prep.

SED and outburst parameters

CH₃OH maser flare with VLBI

Environment of NIRS 3 strongly transformed by the accretion burst:

- CH₃OH emission (cluster P)
 close (~300 au) to source
 disappears, likely destroyed
 by UV radiation.
- New cluster of masers (cluster
 A) excited (at ~1500 au from
 source) produces the observed
 flare pumped by IR radiation

Radio jet burst: accretion turns into ejection

- Radio continuum flux increases from Aug. 2016 i.e. ~13 months after beginning of accretion burst
- Wind re-collimation produces a radio jet.
- Spectral slope typical of a thermal jet.

JVLA multi-epoch spectrum of the jet

A new knot has appeared - Dec. 2016
 Accretion has turned into ejection!

G358.93-0.03-MM1: another NIR dark burst

- 6.7 GHz CH₃OH burst in G358 Sugiyama+2019
- MM1 poorly studied HMYSO, $\sim 5x10^3 L_{\odot}$, $\sim 10 M_{\odot}$, at d ~ 6.7 kpc, located in a cluster
- Follow-up by M2O team: wealth of masering lines in H₂O, OH, CH₃OH flaring Breen+2019;
 Brogan+2019; MacLeod+2019 and new maser species HDO, HNCO,13CH3OH discovered Chen+2020a,b
- No detection of mm variability
 GROND @ 2.2-m MPG: no photometric variation in J,H,K of the alleged NIR counterpart:
 NIR dark outburst!

Brogan et al. 2019

Evidence for propagation of heat wave induced by the accretion burst

Burns et al. Nat Ast. 2020

First epoch

Confirmation of the accretion burst by SOFIA

Methanol maser relocation

Methanol desorption red: ~ optimum 120-125 K, yellow: limit 94 K

Stecklum et al. submitted

Wavelength and flux dependence of flux variations

Rise and decent of the G358 burst

Wavelength dependence at $\lambda > 10 \mu m$ following a power law

Stecklum et al. submitted

Summary

- CH₃OH maser flares are excellent proxies for accretion variability in HMYSOs
- Disk-mediated accretion bursts observed from low- to high-mass YSOs
- Variety of outburst strength in HMYSO similar to low-mass counterparts
- Ejection bursts seen after accretion burst