FEOSAD – двухмерный численный магнито-хемодинамический код для моделирования длительной эволюции протопланетных газопылевых дисков

▶ Воробьев Э. И. (ЮФУ), Акимкин В. В. (ИНАСАН), Молярова Т. (ИНАСАН), Стояновская О. П. (НГУ), Хайбрахманов С. (УрФУ,ЧелГУ), Павлюченков Я. Н. (ИНАСАН), Скляревский А. М. (ЮФУ), Элбакян В. Г. (ЮФУ)

Научный коллектив

Эдуард Воробьев (ЮФУ) – численная гидродинамика, общая координация Виталий Акимкин (ИНАСАН) – модели роста пыли Ярослав Павлюченков, Вардан Элбакян (ИНАСАН) – перенос излучения Тамара Молярова, Дмитрий Вибе (ИНАСАН) – химическая эволюция Ольга Стояновская (НГУ) – трение газа и пыли Сергей Хайбрахманов (ЧелГУ/УрФУ) – магнитная гидродинамика Александр Скляревский (ЮФУ) – фотоиспарение, интерфейс с RADMC-3D

15 лет непрерывной разработки. Первая статья - 2005 (Vorobyov & Basu, ApJL)

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[r^{1/2} \frac{\partial}{\partial r} (v \Sigma r^{1/2}) \right]$$

Уравнение вязкой эволюции диска (Pringle 1981)

Упрощающие предположения при выводе уравнения Прингла

- Тонкий диск (вертикально интегрированные плотности, отсутствие вертикальных движений, локальное вертикальное гидродинамическое равновесие)
- 2) Градиент давления несущественен по сравнению с вязкими моментами сил
- (3) Одномерный осесимметричный диск (отсутствие азимутальной структуры)

FEOSAD (Formation and Evolution of Stars and Disks) (Vorobyov et al. 2018, 2019,2020, Akimkin et al. 2020, Molyarova et al. 2021)

- Двухмерное приближение тонкого диска,
- Численный метод, схожий с кодом ZEUS (Stone & Norman 1992),
- Расчет адвекции на основе кусочных парабол (Colella & Woodward 1984),
- Алгоритм FARGO для ускорения расчета адвекции (Masset 2000),
- Полярная система координат, логарифмическая сетка в радиальном направлении,
- / Распараллелен с помощью технологии OpenMP.

Интегрированная динамика газа и пыли

$\frac{\partial \Sigma_g}{\partial t} + \nabla \cdot (\Sigma_g \mathbf{u}) = 0$	gas	
$\left(\frac{\partial \Sigma_{s.d.}}{\partial t} + \nabla \cdot (\Sigma_{s.d.} \mathbf{u}) = -S(a)\right)$	u_{max}) small dust (strictly linked to g	as)
$\left(\frac{\partial \Sigma_{g.d.}}{\partial t} + \nabla \cdot (\Sigma \mathbf{V}) = S(a_{\max})\right)$	grown dust (pressureless fluid	d)
$\frac{\partial \left(\Sigma_{g} \mathbf{u} \right)}{\partial t} + \left[\nabla \cdot \left(\Sigma_{g} \mathbf{u} \otimes \mathbf{u} \right) \right] =$	$= -\nabla \mathbf{P} - \Sigma_{g} \nabla \Phi + (\nabla \cdot \mathbf{\Pi}) - \Sigma_{g.d.} \mathbf{F}_{drag} \qquad \mathbf{ga}$	IS
$\frac{\partial \left(\boldsymbol{\Sigma}_{g.d.} \mathbf{V}\right)}{\partial t} + \left[\nabla \cdot \left(\boldsymbol{\Sigma}_{g.d.} \mathbf{V} \otimes \mathbf{V}\right)\right]$	$\Big)\Big] = -\Sigma_{g.d.} \nabla \Phi + \Sigma_{g.d.} \mathbf{F}_{drag} + S(a_r) \mathbf{u} \qquad \mathbf{gro}_{du}$	own ust
$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot (\varepsilon \mathbf{u}) = -\mathbf{P} (\nabla \cdot \mathbf{u}) -$	$\left(\mathbf{T}_{mp}^{4}-\mathbf{T}_{irr}^{4}\right)\left(\frac{8\sigma\tau_{p}}{1+2\tau_{p}+1.5\tau_{p}\tau_{R}}\right)+\left(\nabla\mathbf{u}\right)_{pp'}:\mathbf{I}$	$\mathbf{\Pi}_{pp}$
$\frac{\partial a_{\max}}{\partial t} + (\mathbf{v}_{dust} \cdot \nabla) a_{\max} = \Re$	maximum dust radius changes due to growth and advection	
Π – viscous stress tensor;	$v = \alpha c_s h_g$ – kinematic viscosity	

Восстановление вертикальной структуры диска

 $\rho c_V \frac{\partial T}{\partial t} = \rho \kappa_P c \left(E - a T^4 \right) + \rho S,$ $\frac{\partial E}{\partial t} - \frac{\partial}{\partial z} \left(\frac{c}{3\rho\kappa_R} \frac{\partial E}{\partial z} \right) = -\rho\kappa_P c \left(E - aT^4 \right)$ $\frac{1}{\rho}\frac{dP}{dz} = -\frac{GM_*}{r^3}z - 2\pi G\Sigma$

Перенос излучения в вертикальном направлении. Описывают нагрев диска излучением звезды и внешним излучением (S-term) и охлаждение диска в инфракрасном излучении пыли

Локальное вертикальное гидродинамическое равновесие

Проблема внутренних областей диска

Расчет динамики во внутренних областях диска (< 1.0 а.е.) сопряжен с численными ограничениями, налагаемыми на шаг по времени условием Куранта

В Феосаде центральная область диска (~ 1 а.е.) заменена «умной» поглощающей ячейкой, включающей звезду и однородный диск. Вещество может свободно перемещаться между границей диск – поглощающая ячейка (см Vorobyov et al. 2019).

$$\frac{dM_{csc}}{dt} = \dot{M}_{disk} - \dot{M}_{*,csc} - \dot{M}_{*,bst} - \dot{M}_{jet}.$$

$$\frac{dM_*}{dt} = \dot{M}_{*,csc} + \dot{M}_{*,bst}$$

$$\dot{M}_{*,csc} = \begin{cases} \xi \dot{M}_{disk}, & \dot{M}_{disk} > 0\\ 0, & \dot{M}_{disk} \le 0 \end{cases}$$
(3)

Начальные условия

Большинство численных моделей стартуют с уже сформированной системы звезда+протопланетный диск (e.g., FARGO)

Эффект падения вещества их внешней среды учитывается введением источников в уравнениях неразрывности и движения

 $\frac{\partial \Sigma_g}{\partial t} + \nabla \cdot (\Sigma_g \mathbf{u}) = \dot{\Sigma}_{\text{infall}}$

Феосад начинает вычисления с дозвездного облака

Интегрированная динамика газа и пыли в Феосаде

- Более аккуратный учет охлаждения диска (отношение пыли к газу более не предполагается равным 1:100 по всему диску при расчете непрозрачностей)
- Непосредственное сравнение с наблюдениями дисков в излучении пыли (ALMA)
- Исследование механизмов накопления пыли и формирования первичных блоков протопланет (планетезималей)

Большинство численных кодов с интегрированной динамикой пыли предполагают фиксированный размер пыли по всему протяжению диска. При этом могут рассматриваться несколько фракций (bins) пыли с фиксированным размером

Феосад использует двухкомпонентной модель распределения пыли по размерам с возможностью роста пыли и перехода пыли между двумя компонентами:

 $\mathfrak{R} = \frac{\rho_d \, \mathbf{u}_{rel}}{\rho_{solids}}$

1) субмикронная пыль (5*10⁻³ – 1 мкм)

 выросшая пыль (1.0 – а_{тах} мкм), где а_{тах} – переменный максимальный размер, определяемый дрейфом и ростом пыли

$$\frac{\partial a_{\max}}{\partial t} + (\mathbf{v}_{dust} \cdot \nabla) a_{\max} = \Re$$

Stepinsky & Valageas (1997)

(see for details Akimkin et al. 2020, Vorobyov et al. 2020)

Феосад рассчитывает динамику и фазовые переходы (сублимацию и конденсацию на пылинки) четырех летучих соединений СО, СО₂, H₂O и CH₄

Уравнения на примере монооксида углерода

$$\frac{\partial \Sigma_{CO}^{gas}}{\partial t} + \nabla \cdot (\Sigma_{CO}^{gas} \mathbf{u}_{gas}) = -\lambda \Sigma_{CO}^{gas} + \eta_{sm} + \eta_{gr},$$

$$\frac{\partial \Sigma_{CO}^{sm}}{\partial t} + \nabla \cdot (\Sigma_{CO}^{sm} \mathbf{u}_{gas}) = \lambda_{sm} \Sigma_{CO}^{gas} - \eta_{sm},$$

$$\frac{\partial \Sigma_{CO}^{gr}}{\partial t} + \nabla \cdot (\Sigma_{CO}^{gr} \mathbf{u}_{dust}) = \lambda_{gr} \Sigma_{CO}^{gas} - \eta_{gr}.$$

$$\lambda = \lambda_{
m sm} + \lambda_{
m gr}$$
 $\eta = \eta_{
m sm} + \eta_{
m gr}$ $a_{
m frag} = rac{2\Sigma_{
m g} v_{
m frag}^2}{3\pi
ho_{
m s}lpha c_{
m s}^2},$

Фрагментационный барьер пылинок зависит от фрагментационной скорости, которая в свою очередь может определяться химическим составом ледяных мантий пылинок

See for details Molyarova et al. 2021

Обмен мантиями между населениями пыли

Мелкая и крупная пыль обмениваются мантиями в процессе фрагментации и коагуляции

Магнитная гидродинамика в приближении тонкого диска (Vorobyov et al. 2021)

- Магнитное поле включает две компоненты: внешнее поле В₀ и поле В, генерируемое токами внутри диска.
- Внутри диска магнитное поле имеет только вертикальную компоненту B_z.
- Токи присутствуют только внутри диска. Вне диска *j* = 0.

$$\frac{\partial \left(\boldsymbol{\Sigma}_{g} \mathbf{u}\right)}{\partial t} + \left[\nabla \cdot \left(\boldsymbol{\Sigma}_{g} \mathbf{u} \otimes \mathbf{u}\right)\right] = -\nabla \mathbf{P} - \boldsymbol{\Sigma}_{g} \nabla \Phi + \left(\nabla \cdot \mathbf{\Pi}\right)$$
$$-\boldsymbol{\Sigma}_{g.d.} \mathbf{F}_{drag} + \frac{B_{z} B_{p}^{+}}{2\pi} - H_{g} \nabla \left(\frac{B_{z}^{2}}{4\pi}\right).$$

$$\frac{\partial B_z}{\partial t} + \nabla \cdot (B_z u) = \nabla \cdot (\eta \nabla B_z)$$

 η — магнитная диффузивность

Вязкий α-параметр определяется степенью развития MRI

Моделирование мертвых зон и вспышек аккреции

Элементы Лагранжевой гидродинамики в Феосаде

- Моделирование столкновения диска с внешней звездой
- Миграция планет в протопланетном диске
- Расчет динамики диска ведется в неинерциальной системе координат, двигающейся вместе с центральной звездой. Для этого вводится так называемый неявный потенциал (Regaly & Vorobyov 2017).
- 2) Рассчитывается самосогласованная динамика с учетом взаимного гравитационного влияния диска и лагранжевой частицы (внешняя звезда, планета) в срединной плоскости диска (Vorobyov et al. 2017).
- 3) Учитывается аккреция на лагранжеву частицу и обратное влияние на диск в виде аккреционной светимости (Vorobyov et al. 2020).

Феосад учитывает следующие процессы:

- 1) Падение вещества на диск из протозвездной оболочки
- 2) Самогравитация диска
- 3) Нагрев диска звездой и фоновым межзвездным излучением
- 4) Охлаждение тепловым излучением пыли с поверхности диска
- 5) Турбулентнуя вязкость (альфа-параметризация)
- 6) Турбулентная диффузия пыли
- 7) Влияние магнитного поля на динамику диска
- 8) Динамика и рост пыли в срединной плоскости диска
- 9) Динамика летучих соединений в срединной плоскости диска
- 10) Формирование и разрушение ледяных мантий пылинок

Заключение

FEOSAD — двухмерный численный магнито-хемодинамический код для моделирования длительной эволюции протопланетных газопылевых дисков — является совместной разработкой ЮФУ, ИНАСАН, ЧелГУ и НГУ (координатор — Эдуард Воробьев).

Феосад включает следующие основные модули

- Совместная динамика газа и пыли в приближении тонкого диска,
- / Восстановление вертикальной структуры диска
- Нагрев звездой и внешним излучением, охлаждение излучением пыли,
- Модуль роста пыли,
- Динамика и фазовые превращения летучих соединений,
- Магнитная гидродинамика,
- Лагранжевая гидродинамика (планеты, близкий пролет внешней звезды),
- Интерфейс с RADMC-3D для моделирования синтетических изображений диска.

Типичное время расчета одного миллиона лет эволюции диска с разрешением 256х256 ячеек – 10-14 дней на серверах с 16-32 ядрами

Расширения/улучшения

- химическая эволюция в срединной плоскости диска (компактные наборы реакций для CO, CO₂ и H₂O.
- Фотоиспарение диска рентгеновским и жестким УФ излучением,
- Магнитный дисковый ветер (существуют только 1D модели, расширение на неосесимметричные 2D диски не очевидно),
- Различная температура газа и пыли.
- 2D1D расчет динамики внутреннего диска с помощью неявного одномерного кода TAPIR (Ragossnig et al. 2020)

Приглашаем к сотрудничеству!

