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Barriers Against Dust Growth
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● Micron-size dust: electrostatic barrier 
(Okuzumi+09, Akimkin+20)

● Macroscopic dust: radial drift barrier 
(Whipple 72), bouncing barrier (Zsom+10),
fragmentation barrier (Dullemond & Dominik 
2005, Brauer+08, Birsnstiel+09)

Birnstiel+16



  

Dust evolution models

● Monodisperse model

● Bidisperse model

                                               a)
                        
                                               b)  power-law with a

max
=a

gr

                                              
                                               c) separate equation on 
                                                   mass transfer

● Multidisperse model            Smoluchowski equation or 
                                               Monte-Carlo simulations

Stepinski & 
Valageas 1997

Birnstiel+2012

Vorobyov+2018

Akimkin+2020

Brauer+2008,
Zsom+2010,
Drążkowska+2019,
...



  

FEOSAD code
– thin disk 2D hydrodynamics with self-gravity 
and realistic cooling/heating (Vorobyov & Basu 
2009);

– initial conditions: flattened protostellar core;

– evolving star (stellar evolution code, feedback 
to the disk via accretion bursts);

– global (from 1 to 3000 au) and long-term 
simulations (up to several Myr);

– three components: gas and two dust 
populations (Epstein, Stokes and Newton drag; 
Stoyanovskaya+18,20);

– evolving dust (coagulation, fragmentation, and 
drift);



  

Disk physical structure



  

Dust opacity
Akimkin+2020

see also Woitke+15, Birnstiel+18, Rosotti+19, ...

10 – 100x opacity
change for grain sizes

within 0.1 – 10mm



  

Dust continuum emission

See also: Birnstiel & Andrews 2014, Powell+19, Rosotti+2019

Model A, 0.3 Myr



  

Dust continuum emission

See also: Birnstiel & Andrews 2014, Powell+19, Rosotti+2019



  

Dust continuum emission

See also: Birnstiel & Andrews 2014, Powell+19, Rosotti+2019



  

Peculiar case

Model C @ 0.5 Myr



  

Peculiar case: 
same disk, different wavelengths



  

Peculiar case: explanation



  

Peculiar case: ALMA simulations

54 pc, 16 km baseline, 6h observation



  

Comparison with observations

Dots: Lupus discs (Ansdell+2016,2018)
Lines: FEOSAD simulations (Akimkin+2020)



  

Disk radii
• Physical radius – contains 90% of 

the gas or dust mass (see Rosotti+19)

• Visible radius – contains 90% of 
emission (depends on the 
wavelength!)



  

Conclusions
– most of dust growth happens at the early stage protostellar stage 
(<300 kyr), when compact and dense disk is forming;

– sharp outer edge can be seen due to drop in dust opacity, but not in 
surface density. The edge is wavelength-dependent;

– non-monotonic radial variations of grain size can produce an 
opacity gap, which is not accompanied by a physical gap and shift 
with the wavelength.

More details: arxiv.org/abs/2010.06566



  

Disk mass

Birnstiel et al., 2016



  

Dust evolution model in FEOSAD
1) Small dust (S): fixed size (1 um), 
     coupled to the gas
2) Grown dust (G): size depends on time, 
     radial and azimuthal position



  

Decomposition of the spectral index
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