Серная химия в диске DM Tau: результаты наблюдений с ALMA & NOEMA

NOEMA 2021

Основные мотивы исследования

• Хим. состав протопланетных дисков \Rightarrow связь с

атмосферным составом экзопланет

- M3C & кометы: видны SO, SO₂, OCS, CS, CCS, H₂CS, H₂S, S_n, ...
- Чувствительны к наличию истечений, ударных волн, высокоэнергетического излучения
- Диски Class I/II: видны лишь CS, H₂CS, H₂S, rarely SO and SO₂
- >99% S находится в твердом виде (в пыли)

Dutrey+11; Pacheco-Vázquez+16; Phuong+18; Semenov+18; Teague+18; Kama+19; Le Gal+19; Codella+20

Наблюдения диска DM Tau с ALMA

Semenov et al. (2018), A&A, 617, 28

- DM Tau: звезда M0.5, массивный, большой диск
- Радиус ~ 800 а.е. (¹²СО), *i* ~35°
- Данные: разрешение 0.5", 0.3 км/с, I σ rms ~ 5 mJy/beam
- Видно линию CS 3-2
- Возможно, видно линию SO₂ 3(2,2)-3(1,3)?
- Не видно линий SO, OCS, H₂S, CCS

Моделирование ALMA данных: лучевые концентрации N(X)

RADEX: 0D, N(X) усредненные по диску

DiskFit: ID, N(X) как функция радиуса

	RADEX	DiskFit
CS	I.5–3 x I0 ¹² cm ⁻²	6±3 x 10 ¹² cm ⁻²
SO	<2 10 ¹² cm ⁻²	<4 10 ¹² cm ⁻²
SO ₂	<3 10 ¹³ cm ⁻²	<10 ¹³ cm ⁻²
H_2S	<10 ¹⁴ cm ⁻²	<3 10 ¹³ cm ⁻²
OCS	<10 ¹⁴ cm ⁻²	<8 10 ¹¹ cm ⁻²
CCS	_	<10 ¹⁴ cm ⁻²

- N(X) были промоделированы с хим. моделью DM Tau диска
- Варьируемые параметры: L_X, UV, CRP, размер пыли, обилие S, C/O, etc.

Две модели с наилучшим согласием с наблюдениями ALMA

- Модель (бары) vs наблюдения (стрелки и +)
- Модель #I: C/O = I, L(X) = 10³⁰ erg/s
- Модель #2: C/O = 0.46, L(X) = 10²⁹ erg/s
- Обе модели показывают разумное согласие с данными

Наблюдения DM Tau диска с NOEMA

- WI8BM: разрешение 2"хI", ∆v = 0.3 km/s, Iσ rms ≈ 3.5 mJy/beam
- Видно: о-H₂S, о-H₂CS
- Не видно: SO₂, OCS, CCS

RADEX: $o-H_2S I_{(1,0)} - I_{(0,1)}$ at 168.7627 GHz

• Наблюдаемая интегральная яркостная температура: 0.17 К км/с

• N(o-H₂S) ~ 1.5 х 10¹² см⁻² (с ошибкой ~ 3 раз)

RADEX: $o-H_2CS 5_{(1,5)} - 4_{(1,4)}$ at 169.114 GHz

- Наблюдаемая интегральная яркостная температура: 0.31 К км/с
- N(o-H₂CS) ~ 3 х 10¹² см⁻² (с ошибкой ~ 3 раз)

Моделирования данных NOEMA: лучевые концентрации H₂S and H₂CS

	RADEX	Other disks
H ₂ S*	~5 x 10 ¹² cm ⁻²	≲ I0¹² cm-²
H ₂ CS*	~10 ¹³ cm ⁻²	~3 0 ¹² – 0 ¹⁴ cm ⁻²
SO ₂	< 10 ¹⁴ cm ⁻²	_
OCS	< 10 ¹⁴ cm ⁻²	

*Тут предполагается о/р = 3

Модель наилучшего согласия

- DM Tau: рентгеновская светимость ~ 10³⁰ erg/s (M. Guedel)
- Модель #I: C/O = I, $L_X = 10^{30} \text{ erg/s} \Rightarrow \text{все, кроме } H_2CS$
- Модель #2: C/O = 0.46, $L_X = 10^{30}$ erg/s \Rightarrow все, кроме H₂CS и SO
- Модель с С/О ≈ I дает наилучшее согласие!

Заключение

• Найдены новые молекулы в диске DM Tau с NOEMA:

 $o-H_2S$ и $o-H_2CS$

- Модель наилучшего согласия: С/О ≈ I в газе
- Разногласие между наблюденными и модельными

луч. концентрациями H₂CS:

- o/p < 3?

- Нетепловая десорбция H₂CS льда с пыли?
- Неполная (поверхностная) химия в модели?